Loadmonitors - GAMMA series

Multifunction
Fault latch
Recognition of disconnected consumers
Suitable for VFI (10 to 100 Hz)
Supply voltage selectable via power modules
1 change-over contact
Width 22.5 mm
Industrial design

Technical data

1. Functions

True power monitoring in 1- or 3-phase mains with adjustable threshold, fixeded hysteresis, timing for start-up supression and tripping delay separately adjustable, fault latch and the following functions (selectable by means of rotary switch)

OVER $+\overline{\mathrm{l}=0}$	Overload monitoring with recognition of disconnected consumers (Rel.ON if $\mathrm{I}=0$
OVER $+\mathrm{I}=0$	Overload monitoring with recognition of disconnected consumers (Rel.OFF if $\mathrm{I}=0$)
UNDER	Underload monitoring
UNDER $+\mathrm{I}=0$	Underload monitoring with recognition of disconnected consumers (Rel.ON if $\mathrm{I}=0$)

2. Time ranges

Start-up suppression time:
Tripping delay:
Adjustment range

3. Indicators

Green LED ON:
Green LED flashes:
Yellow LED R ON/OFF:
Yellow LED I=0 ON/OFF:
Red LED ON/OFF:
Red LED flashes:
0.1 s 2s
0.1 s 2 s
indication of supply voltage indication of start-up supression time indication of relay output indication of disconnected consumers indication of failure of the corresponding threshold indication of tripping delay of the corresponding threshold

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted on DIN-Rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque: max. 1Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

5. Input circuit

Supply voltage:
12 to 400 V AC
Tolerance:
Rated frequency:
Rated consumption:
Duration of operation:
Reset time:
Residual ripple for DC:
Drop-out voltage:
Overvoltage category:
Rated surge voltage:
terminals A1-A2 (galvanically separated) selectable via power modules TR2 according to specification of power module according to specification of power module 2VA (1.5W)
100\%
500 ms
$>30 \%$ of the supply voltage
III (in accordance with IEC 60664-1) 4kV
6. Output circuit

1 potential free change-over contact
Rated voltage:
250V AC
Switching capacity: 750VA (3A / 250V AC)
If the distance between the devices is less than 5 mm !
Switching capacity: 1250VA (5A / 250V AC)
If the distance between the devices is greater than 5 mm !

Fusing:
Mechanical life:
Electrical life:

Switching frequency:

Overvoltage category:
Rated surge voltage:
7. Measuring circuit

Measuring range P_{N} :
Wave form
AC Sinus:
Sinus-weighted PWM:
Measuring-input voltage:
1-phase mains
3-phase mains
Overload capacity:
1-phase mains
3-phase mains
Input resistance:
Measuring-input current:
Power range $0.5,1 \mathrm{~kW}$:
Power range 2, 4 kW :
Overload capacity:
Input resistance:
Switching threshold:
Hysteresis:
Overvoltage category:
Rated surge voltage:

8. Control contact Y (equipotential with measuring circuit)

Function:
Loadable:
Line length $\mathrm{Y} 1-\mathrm{Y} 2$:
Control pulse length:
Reset:

9. Accuracy

Base accuracy:
Frequency response:
Adjustment accuracy:
Repetition accuracy:
Voltage influence:
Temperature influence:

5A fast acting
20×10^{6} operations
2×10^{5} operations at 1000 VA resistive load
max. $60 / \mathrm{min}$ at 100VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1)
III (in accordance with IEC 60664-1)
4 kV
$0.5,1,2$ and 4 kW selectable
10 to 400 Hz
10 to 100 Hz
terminals L1-L2-L3
0 to 230 V AC
$3 \sim 0$ to $415 / 240 \mathrm{~V}$
300 V AC
3~ 500/289V
$2 \mathrm{M} \Omega$
terminals i-k
0 to 6A
0 to 12 A (for $\mathrm{l}>8 \mathrm{~A}$ distance $>5 \mathrm{~mm}$)
12A permanently
$<10 \mathrm{~m} \Omega$
5% to 120% of P_{N}
fixed, approx. 3% of P_{N}
III (in accordance with IEC 60664-1)
4 kV
fault latch (Y1-Y2 bridged)
No
max. 10m (twisted pair)
normally closed contact in the input circuit
$\pm 2 \%$ (of maximum scale value)
$\pm 0.025 \% / \mathrm{Hz}$
$\leq 5 \%$ (of maximum scale value)
$\pm 2 \%$
$\leq 0.2 \% /{ }^{\circ} \mathrm{C}$

Technical data

10. Ambient conditions
Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (in accordance with IEC 60068-1) -25 to $+40^{\circ} \mathrm{C}$ (in accordance with UL 508)
Storage temperature: -25 to $+70^{\circ} \mathrm{C}$
Transport temperature: -25 to $+70^{\circ} \mathrm{C}$
Relative humidity:
Pollution degree:
Vibration resistance:
Shock resistance:
15% to 85%
(in accordance with IEC 60721-3-3 class 3K3)
3 (in accordance with IEC 60664-1)
10 to 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
15 g 11 ms
(in accordance with IEC 60068-2-27)

Functions

When the supply voltage U is applied, the output relays switch into on-position (yellow LED R and LED I=0 illuminated) and the set interval of the start-up suppression (START) begins (green LED U flashes). Changes of the measured true power during this period do not affect the state of the output relay. After the interval has expired the green LED is illuminated steadily.

Overload monitoring (OVER)

When the measured true power exceeds the value adjusted at the PN-regulator, the set interval of the tripping delay (DELAY) begins (red LED P flashes). After the interval has expired (red LED P illuminated), the output relay switches into off-position (yellow LED R not illuminated). The output relay again switches into on-position (yellow LED R illuminated), when the measured true power falls below the value adjusted at the PN-regulator by more than the fixeded hysteresis (red LED P not illuminated). If the fault latch is activated (bridge Y1-Y2) and the measured true power remains above the MAX-value longer than the set interval of the tripping delay, the output relay remains in the offposition even if the measured true power falls below the value adjusted at the PN-regulator by more than the fixeded hysteresis. After resetting the failure (interrupting and re-applying the supply voltage), the output relay switches into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Underload monitoring (UNDER)

When the measured true power falls below the value adjusted at the PN-regulator, the set interval of the tripping delay (DELAY) begins (red LED P flashes). After the interval has expired (red LED P illuminated), the output relay switches into off-position (yellow LED R not illuminated). The output relay again switches into on-position (yellow LED R illuminated), when the measured true power exceeds the value adjusted at the PN -regulator by more than the fixeded hysteresis. If the fault latch is activated (bridge $\mathrm{Y} 1-\mathrm{Y} 2$) and the measured true power remains below the PN -value longer than the set interval of the tripping delay, the output relay remains in the off-position even if the measured true power exceeds the value adjusted at the PN-regulator by more than the fixeded hysteresis. After resetting the failure (interrupting and re-applying the supply voltage), the output relay switches into on-position and a new measuring cycle begins with the set interval of the start-up suppression (START).

Recognition of disconnected consumers ($\mathrm{I}=0$)
Overview:

Function	OVER		UNDER	
	$\mathrm{O}+\overline{\mathrm{L}}$	$\mathrm{O}+\mathrm{I}<$	$\mathrm{U}+\mathrm{I}<$	U
Detection $\mathrm{I}=0$	yes	yes	yes	no
Relais if $\mathrm{I}=0$	on	off	on	off
LED $\mathrm{I}=0$ if $\mathrm{I}=0$	on	on	on	off

When the current flow between i and k is interrupted and no fault has been stored, the output acts as shown in the table.
When the current flow is restored, the measuring cycle is restarted with the set interval of the start-up supression.(START).

OVER $+\overline{<}$

OVER + $\mathrm{I}<$

UNDER + K

UNDER

Functions

Connected to 3~400V mains with power module 24 V AC without fault latch $\mathrm{I}_{\mathrm{N}}<12 \mathrm{~A}$

Connected to 1~230V mains with power module 230V AC without fault latch $\mathrm{I}_{\mathrm{N}}<12 \mathrm{~A}$

Connected to 3~400V mains with power module SNT2 24V DC without fault latch $\mathrm{I}_{\mathrm{N}}<12 \mathrm{~A}$

Connections

Connected to 1~230V mains with power module 230V AC without fault latch $\mathrm{I}_{\mathrm{N}}>12 \mathrm{~A}$

Connected to 1~230V mains with power module 230V AC without fault latch $\mathrm{I}_{\mathrm{N}}>12 \mathrm{~A}$

Dimensions

Subject to alterations and errors

